CBZLIB and advanced Bondarenko model

This material is a summary of the following paper:

G. Chiba, et al., "Advanced Bondarenko method for resonance self-shielding calculations in deterministic reactor physics code system CBZ," Ann. Nucl. Energy, 96, p.277-286 (2016).

CBZ and CBZLIB

- CBZ is a general-purpose reactor physics code system being developed at Nuclear Reactor Engineering Laboratory of Hokkaido University.
- CBZ is based on the deterministic method, so multi-group representations for neutron flux and reaction cross sections are adopted.
- CBZLIB is a multi-group library, and is used to calculate multigroup (effective) cross sections of medium in homogeneous and heterogeneous systems.
- CBZLIB is based on the Bondarenko-type library*; it consists of infinite-dilution cross sections, scattering matrices and self-shielding factors dependent on background cross sections.

* Bondarenko, I. I., "Group constants for nuclear reactor calculations," Consultants Bureau, New York (1964).

Concept of CBZLIB

- Nowadays, advanced energy group structure like SHEM 281group structure and CASMO 586-group structure has been adopted in many reactor physics code systems.
- When we use these fine-group libraries, energy group collapsing (or condensation) of cross sections is sometimes required in assembly calculations or subsequent whole-core calculations.
- The concept of CBZLIB is to improve calculation accuracy of effective cross sections WITHOUT increasing the number of energy groups; the SRAC-107 group structure is continuously utilized.

Basic theory of the Bondarenko model

- Bondarenko-type libraries are applied to resonance selfshielding calculations based on the equivalence theory.
- The key point of the equivalence theory is how to accurately evaluate background cross sections in arbitrary heterogeneous systems.
- Escape probability from a single fuel pin is generally approximated by the rational approximation.
- Lattice effect can be taken into account by the neutron current method proposed by Yamamoto and Sugimura*.

* N. Sugimura, A. Yamamoto, "Evaluation of Dancoff factors in complicated geometry using the method of characteristics," J. Nucl. Sci. Technol., **43**, p.1182 (2006).

Escape probability representation in CBZLIB

- Accuracy of the escape probability can be improved by increasing the number of terms considered in the rational approximation: multi-term rational approximation.
- CBZLIB adopts a different approach: Bell factor optimization.

$$\phi^{F}(E) = \frac{\Sigma_{0}^{F}}{\Sigma_{t}^{F}(E)} \left(1 - P_{esc}(E)\right) + P_{esc}(E) \implies \tilde{\phi}^{F}(E) \propto \frac{1}{\sigma_{t}^{i}(E) + \sigma_{0} + a/(N_{i}\overline{l})}$$
$$P_{esc}(E) \approx \frac{a}{\overline{l}\Sigma_{t}^{F}(E) + a}$$

- Optimized Bell factor *a* can be calculated so as to satisfy the following equation. The energy integration is carried out by the sub-group method.

$$\frac{\langle \sigma_{\chi}^{i}(E)\phi^{F}(E)\rangle}{\langle \phi^{F}(E)\rangle} = \frac{\langle \sigma_{\chi}^{i}(E)\widetilde{\phi}^{F}(E)\rangle}{\langle \widetilde{\phi}^{F}(E)\rangle}$$

Further improvement in CBZLIB: resonance interference

- Theoretically the equivalence theory cannot consider the resonance interference effect because when one resonant nuclide is a target of calculation, other nuclides are assumed non-resonant.
- The TIMS code can provide self-shielding factors calculated by solving neutron slowing-down equation with considering two different resonant nuclides.
- With this capability, we can consider resonance interference with one-specific other nuclide. Generally resonance interference with uranium-238 are considered.

Further improvement in CBZLIB: resonance interference

- In CBZLIB, a pair of nuclides where resonance interference is considered can be dependent on nuclide and energy group.
- If we need to consider important resonance interferences of several nuclide pairs in the same energy group, multiple correction is adopted:

$$\sigma_g = \left(\prod_{j=1}^J rac{\sigma_g^j}{\sigma_g^{w/o\textit{RI}}}
ight) \cdot \sigma_g^{w/o\textit{RI}}$$

Nuclide	Target nuclide (Energy group)
Uranium-235	Uranium-238 (All)
Uranium-238	Uranium-235 (57, 58) Plutonium-240 (48ª, 50, 51, 53) Plutonium-239 (Other groups, 48ª)
Plutonium-239	Plutonium-240 (47, 50 ^a , 53 ^a) Plutonium-241 (53 ^a , 54, 55, 56) Plutonium-242 (49) Uranium-238 (Other groups, 50 ^a , 53 ^a)
Plutonium-240	Plutonium-239 (47, 50) Uranium-238 (Other groups)
Plutonium-241	Plutonium-239 (52, 54, 55, 56) Americium-241 (59) Uranium-238 (Other groups)
Plutonium-242	Plutonium-239 (49) Americium-241 (61) Uranium-238 (Other groups)
Americium-241	Plutonium-241 (59) Uranium-238 (Other groups)

Further improvement in CBZLIB: resonance interference

Further improvement in CBZLIB: current-weight total XS

- It has been well known that neutron current-weighted total cross sections should be considered in energy group collapsing in the neutron transport equation*.
- If we do not consider this, group collapsing errors affect numerical results. To avoid this, the SPH factors are sometimes used.
- NJOY can calculate current-weighted total cross sections based on the homogeneous P1 approximation and narrow resonance approximation, but this is applicable to limited problems and not to light water reactor pin-cell problems.
- In CBZLIB, current-weight total cross sections are calculated with some representative pin-cell problems with a fine-group library.

^{*} T. Takeda, T. Kitada, "Direction and region dependent cross sections for use in MOX fuel analysis," J. Nucl. Sci. Technol., Supp.2, p.1057 (2002).

Further improvement in CBZLIB: current-weight total XS

Current-weight total cross sections of U-238 calculated with several different LWR pin-cell models. Error bars show possible ranges.

Average values are implemented to CBZLIB as a correction factor. This means that each of CBZLIB has its specific applicable problems.

Further improvement in CBZLIB: current-weight total XS

In addition to U-238, total cross section of Pu-242 in the 61th group (2.38 - 3.06 eV) is also corrected because of its large impact.

PWR	ID	Fuel type	U-2 enrich	35 nment	Pu enrichment	Pu-vector	[P8/P9/P0/P1/P2/A1]
	1	1102	3	<u></u>			
	2	102	02 3.4 02 4.1 02 4.7 0X 0.2 0X 0.2				
	3	U02					
	4	MOX			13	4. 1/45. 4	/25. 3/9. 6/13. 0/2. 6
	5	MOX			5	2. 1/54. 5	5/25.0/9.3/6.4/2.7
	6 MOX 0.2 7 MOX 0.2		2	10	2.1/54.5	5/25.0/9.3/6.4/2.7	
			2	13	2.1/54.5	5/25.0/9.3/6.4/2.7	
	8	MOX	0.	2	5	0.04/79.2	24/17.8/2.4/0.4/0.2
BWR	ID	Fuel type	Step	Void ratio [%]	U-235 enrichment [%]	Pu enrichment [%]	Pu-vector [P8/P9/P0/P1/P2/A1]
	1	U02	I	0	3.0		
	2	U02	Ι	40	3.0		
	3	U02	Ι	70	3.0		
	4	U02	ΙI	0	3.8		
	5	U02	ΙI	40	3.8		
	6	U02	ΙI	70	3.8		
	7	U02	III	0	4.1		
	8	U02	III	40	4. 1		
	9	U02	III	70	4. 1		
	10	MOX	II	0	0.2	4	1. 5/58. 7/26. 6/8. 3/4. 0/0. 8
	11	MOX	II	40	0.2	4	1. 5/58. 7/26. 6/8. 3/4. 0/0. 8
	12	MOX	II	40	0.2	4	1. 7/53. 4/29. 7/8. 7/5. 6/0. 9
	13	MOX		40	0.2	4	0.8/6/.8/21.8/6.9/2.1/0.7
	14	MOX		/0	0.2	4	1.5/58.//26.6/8.3/4.0/0.8
	15	MOX		/0	0.2	8	1. 5/58. 7/26. 6/8. 3/4. 0/0. 8
	16	MOX		/0	0.2	13	1. 5/58. //26. 6/8. 3/4. 0/0. 8

12

Good agreement with continuous-energy Monte Carlo results is observed in a wide range of LWR pin-cell problems.

Each of the already-mentioned three techniques has large influence, and current-weight total correction has the most significant impact.

Please be careful that multi-group library generated by NJOY with the NR approximation gives not-bad results as the above.

Test of CBZLIB against BWR assembly problem

Good agreement with MVP-BURN result is obtained in BWR assembly burnup problem.