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1 Introduction

When neutron collides with nucleus, nuclear fission reaction might occur with given probability and this nucleus is
divided into (generally) two fragments. These fragments, known as fission fragments, possess a huge amount of kinetic
energy of about 167 MeV, and nuclear power utilizes this energy finally as electric power. 1

Nuclear fuel in which fission reactions occur is generally contained in a pressure vessel. In a pressure vessel, various
equipments are located, and a small part around nuclear fuels is called a reactor core, and a reactor core is a “heart”
of a nuclear power plant.

In nuclear power plants, the number of neutrons which cause fission reactions is controlled to maintain fission
reactions. That is, to properly control fission reactions, we have to know and understand behavior of neutrons in a
reactor core. Neutron behavior in a reactor core is described by the Boltzman-type neutron transport equation, so we
have to solve this equation somehow. To solve this equation to know neutron behavior is called reactor core analysis or
neutronics analysis, and these are one of important subjects in the field of nuclear engineering.

Many code systems for reactor core analyses have been developed so far in the world. One of the most famous
code systems might be CASMO/SIMULATE developed by STUDVIK. This code system has been widely used for
actual light water power reactors analyses in many countries. In Japan, various code systems have been developed, and
the SRAC code of Japan Atomic Energy Agency (JAEA) and AEGIS/SCOPE-2 developed by Nuclear Fuel Industry,
Nuclear Engineering Ltd. and Nagoya university would representative.

The author worked at JAEA in the past. There he had developed a code system CBG by himself, and had published
several papers with it. Based on the development experience of CBG, he began to develop a new code system CBZ
after moving to Hokkaido University. This is the reason why both of the names “CBZ” and “CBG” are used through
this tutorial. With CBZ, one can perform various kinds of reactor physics calculations such as criticality calculations,
kinetic calculations, radiation shielding calculations and nuclear fuel burnup calculations. This tutorial is for users to
learn how to use the code system CBZ.

1Strictly speaking, fission energy includes energy of γ-ray instantaneously emitted in the fission reaction and energy of β-ray and γ-ray
which are emitted from unstable fission fragments nuclides.
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2 Install

When one uses CBZ, he can do his calculations by using various modules provided in CBZ. This can be done for users
by writing a computer program with C++, and compiling and running it. In this compiling, a library file libCBG.a,
which can be generated by compiling varous modules of CBZ, should be included. This is shown in Fig. 1. In this
section, we will compile the CBZ source program. How to compile computer programs written by users will be explained
in the following sections.

Fig. 1: Relation between the CBZ source files and computer programs prepared by users

After uncompressing and expanding the package named as cbz.xxxxyyzz.tgz, 2 you can get a directory CBZ which
contains the following directories: 3

� CBG

� CBGCAL

� CBGLIB

� CBGLIB BURN

In the CBG directory, you can find a src directory. In this directory, source codes of CBZ are located.
The CBGCAL directory is used to locate data to perform actual calculations, and in the distribution package you can

find several directories such as Takeda.tutorial, lanl.tutorial and mza.tutorial.
The CBGLIB directory is used to store nuclear reaction data (nuclear data), CBZLIB 4, and the CBGLIB BURN directory

is to store data files required in nuclear fuel burnup calculations.
Now let us compile CBZ. Please move to the CBG/src directory. 5 There is possibility that compilation has been

already done in the distribution package, so please type make clean to delete all the files previously generated. Then to
start compiling, please type make. After that, it starts compiling and a file libCBG.a might be generated after several
minutes. By typing ls *.a, you can confirm that this file is successfully generated. When the CBZ source programs
are revised, users have to compile them again and newly generate libCBG.a.

This is the end of the install. Note that CBGLIB might not be included in the package because of its large size. In
such a case, please contact with Chiba or others to get the CBGLIB data.

2Please type tar xvfz cbz.xxxxyyzz.tgz.
3In the CBZ directory, many files are located in layer-structured directories. When one wants to move all the data contained in the CBZ

directory, it is quite convenient if one can create one file including all these data. Doing “tar” is to summarize one directory including the
data into one file, and a summarized file is called a tar file. For example, when ones create a tar file for the CBZ directory, they have to
type tar cvf cbz.tar CBZ, and then one file cbz.tar which contains all the data can be generated. Furthermore, a tar file is generally
large-sized, so it is better to compress it. The command for compression is gzip cbz.tar, and by doing this we can generate a cbz.tar.gz

file. The above procedure can be done at once by a command tar cvfz cbz.tgz CBZ, and its opposite is tar xvfz cbz.tgz.
4Nuclear data defines probability of interactions between neutron and nucleus. Detail will be described later.
5Please type cd CBZ/CBG/src.
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3 Calculations of Takeda benchmark

Here let us calculate a neutron transport problem, Takeda benchmark, with CBZ. 6 The Takeda benchmark includes
four (sub-)problems (or reactor cores), and here we use the simplest one, problem 1. Geometrical specification of the
problem 1 is shown in Fig. 2.

Fig. 2: Problem 1 of Takeda benchmark (left: XY-plane, right:XZ(YZ)-plane)

The left part of Fig. 2 is a top view. In this figure, 1/4 of the whole system is presented. We can find that a core
region is located around the center and a reflector region is around the peripheral. Black region in the reflector is a
position in which a control rod is inserted. When a control rod is not inserted, this region should be treated as void.
The right part of this figure is a side view, and you can find that a control rod (or void) region has a length along the
z-axis, and that a core region is surrounded by a reflector region in axial direction also.

Please open a file main.takeda1.dif 1.cxx in the directory CBGCAL/Takeda.tutorial by an editor.
First you can find a comment line with Geometry data around line 20. Below this line, geometry data of problem

is defined. In this problem, Cartesian coordinate is used, and each direction (X, Y and Z) is divided into five blocks.
As defined by arrays xl, yl and zl, length of each block is set 5 cm, and in calculations, each block is further divided
into five as defined by arrays xm, ym and zm. Each axis is divided to 25, so the total number of spatial meshes becomes
25 × 25 × 25 = 15, 625 in this example. Material assignment to 5 × 5 × 5 = 125 blocks is defined by an array mat. In
this example, “0” is fuel, “1” is reflector, “2” is control rod and “3” is void. In the problem 1 of the Takeda benchmark,
two calculations are expected: a control rod insertion case and a control rod withdrawn case. In this example, material
“3” is assigned to control rod position, so this example corresponds to the control rod withdrawn case.

Next you can find other comment line with the description “Material data” around line 70. Below this line, material
data, that are neutron-nucleus reaction cross sections, are defined. In this problem, neutron energy is discretized to
two. 7

Finally, using the geometry data and material data defined above, the neutron diffusion equation is numerically
solved. As mentioned above, neutron behavior is described by the neutron transport equation. The diffusion equation
can be derived by introducing several assumptions to the transport equation. In the neutron transport equation,
position, energy and direction dependence of neutrons should be considered, but angular dependence can be neglected
in the diffusion equation. This makes diffusion equation easier to be solved. Here we use a solver PLOS which can
numerically solve the diffusion equation.

First, please type cp main.takeda1.dif 1.cxx main.cxx to copy a file main.takeda1.dif 1.cxx to main.cxx.
Then type make to compile it. 8

As a result, you can generate a load module file named a.out. Please confirm this. After the a.out file is generated,
please type ./a.out and perform calculations. A result similar to the following would be printed on your screen.

6The Takeda benchmark is a benchmark problem prepared by Prof. Toshikazu Takeda of Osaka University to verify computer programs
for neutron transport. In 1991, experts on neutron transport calculations were invited by OCED/NEA and their own computer codes were
compared with each other using this benchmark problem.

7Divided energy region is called group, and we can say that the number of energy groups is two in this problem.
8make compiles a file main.cxx located in the same directory. Details of procedures are defined in a file makefile. So when you have a

file to be calculated, you have to copy (or rename) it to main.cxx in CBZ.
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Listing 1: Example of Takeda benchmark calculation

1 #*** Total Mesh : 15625
2 #*************************************************
3 #* System CBG
4 #* Power i t e r a t i o n
5 #* So lve r : PLOS
6 #* Acce l e r a t i on : none
7 #* Forward c a l c u l a t i o n
8 #* Convergence cond i t i on ( k e f f ) : 1e=05
9 #* ( f l u x ) : 0 .0001

10 #* ( source ) : 0 .0001
11 #*************************************************
12 #* I t : K e f f : Err in k : Err in : Err in
13 #* er : : : f l u x : source
14 #*************************************************
15 # 0 : 0 .906483 9 .352 e=02 2 .233 e+00 3.700 e=01
16 # 1 : 0 .917541 1 .220 e=02 1 .018 e=01 7 .723 e=02
17 # 2 : 0 .925198 8 .344 e=03 6 .630 e=02 5 .346 e=02
18 # 3 : 0 .927640 2 .640 e=03 1 .552 e=02 1 .376 e=02
19 # 4 : 0 .927664 2 .565 e=05 4 .699 e=02 2 .787 e=02
20 # 5 : 0 .928331 7 .198 e=04 4 .428 e=03 2 .952 e=03
21 # 6 : 0 .927417 9 .849 e=04 1 .424 e=03 2 .563 e=02
22 # 7 : 0 .927214 2 .192 e=04 4 .204 e=03 1 .606 e=02
23 # 8 : 0 .927261 5 .146 e=05 2 .991 e=03 7 .066 e=03
24 # 9 : 0 .927328 7 .128 e=05 3 .155 e=03 2 .690 e=03
25 # 10 : 0 .927390 6 .744 e=05 6 .710 e=04 4 .409 e=04
26 # 11 : 0 .927305 9 .221 e=05 2 .339 e=04 2 .580 e=03
27 # 12 : 0 .927291 1 .492 e=05 4 .324 e=04 1 .440 e=03
28 # 13 : 0 .927291 6 .520 e=07 8 .558 e=04 7 .044 e=04
29 # 14 : 0 .927304 1 .414 e=05 1 .460 e=04 1 .022 e=04
30 # 15 : 0 .927295 9 .924 e=06 4 .249 e=04 3 .309 e=04
31 # 16 : 0 .927300 5 .689 e=06 5 .646 e=05 3 .009 e=05

A solver PLOS solves the neutron diffusion equation with an iterative procedure, so neutron effective multiplication
factor keff and (spatial and energy distributions of) neutron flux are revised at each iteration. By confirming those
quantities are converged, these can be final results. More detail, difference between a result of the present iteration
and that of the preceding iteration is compared, and convergence is confirmed if this difference is smaller than a pre-
determined criteria. The above example is a process during this iterative procedure, and relative differences of keff and
neutron flux and fission source are shown. Also you can get the final result of keff from this.

Numerical calculations should include various errors and one of the most important ones is discretization error on
space. In the present example, one block with 5 cm length is divided into 5×5×5 meshes. We should know that a result
obtained with this model is just an approximated solution, and rigorous solution which is free from the discretization
error can be obtained when we use infinite number of spatial meshes.� �

Problem 3.1: Perform calculations with fine mesh division: the number of meshes per each plane should be increased
by two or three times. Compare result (keff) and computation time. You can measure computation time by typing
time ./a.out. Change in the number of spatial meshes can be done by changing values of xm, ym and zm.� �
This benchmark problem has rigorous numerical solution, which was obtained by solving the neutron transport

equation with the Monte Carlo method, and the rigorous solution is 0.9780 in the control rod withdrawn case. What
about your result with PLOS? There might be large difference between your result and the rigorous one. As already
mentioned, PLOS yields an approximated solution to the diffusion equation, which is approximated form of the transport
equation, so the PLOS solution is just an approximation.

Next let’s use another program to solve the neutron transport equation. Please run main.takeda1.sn.cxx. Note
that this calculations uses 10×10×10 meshes for each block with 5 cm plane. What about your result?

Here we use a solver SNT, which solves the neutron transport equation numerically. By using SNT, you might
get solution close to the rigorous one (0.9780), but you require longer computation time than PLOS. In the field of
numerical calculations, method development to reduce computation time to attain convergence is one of the most
important subjects. The same thing can be said in the reactor core analysis field, and various methods have been
proposed. Let us use here the diffusion synthetic acceleration (DSA) method. This method uses solution of diffusion
equation to guess converged solution to transport equation. You can see a command sys.NoDSAAcceleration() around
line 5 from the end in main.cxx, so please remove this line or comment it out by adding //. By doing this, you can
get converged solution with short computation time.

In addition to DSA, we can further accelerate calculation by using the coarse-mesh finite difference (CMFD) accel-
eration. You can use this by changing CalIgen(‘‘none’’); around the end of the program to CalIgen(‘‘cmfd’’);.
Please confirm that computation time is further reduced.
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� �
Problem 3.2: Next let us calculate the control rod insertion case. It can be easily done by changing material
assignment. Control rod reactivity worth can be calculated from two keffs of the control rod insertion and withdrawn
cases, so obtain these reactivity worth by both the diffusion and transport calculations. Control rod reactivity
worth can be defined as (1/k1 − 1/k2) if neutron multiplication factors before and after the control rod insertion
are k1 and k2. In the reference Monte Carlo calculations, a control rod reactivity worth of -0.0166∆k/kk′ was
obtained, so please compare your results with this reference.� �
Next let’s observe spatial distribution of neutron flux.
Here we use a method ShowNeutronFluxAlongXAxis which outputs neutron flux spatial distribution along the X

axis. You can use this by commenting out a corresponding line in the file main.takeda1.dif 1.cxx. Arguments of
this method are as follows: The first and second ones are positions in Y and Z directions for which neutron flux spatial
distribution is printed out. If both of them are zero, neutron flux spatial distribution along the X axis about the first
meshes on the Y and Z directions. The third argument is an energy group of which neutron flux spatial distribution is
printed out. If you choose -1 for this argument, neutron fluxes of all energy groups are printed. Please be careful that
the first position/energy corresponds to 0 in a C++ array.� �

Problem 3.3: Please plot spatial distribution of neutron flux of groups 1 and 2 along the X-axis by Gnuplot or
Excel. Control rod is inserted and distribution should be chosen over control rod position. In addition, the same
plot should be prepared for the control rod withdrawn case, and compare the distribution before and after the
control rod insertion.� �

Calculation results are printed out on your screen, so you have to copy and paste it. This should be cumbersome, so
you can do calculations by typing ./a.out > output. If you do so, all these results are written in a file output, and
you can edit this file to manipulate your results.
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