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1 Integral test of nuclear data

A particle interacts with a nucleus under a probability that depends on the particle’s own incident
energy. This interaction probability is defined as a cross section and is generally written as σn,x(E)
for nuclide n, reaction x, and particle incident energy E. Some cross sections also take into account
the dependence of the energy of the secondary particles emitted as a result of the interaction. An
example of this is a scattering reaction, in which the cross section can be written as σn,x(E→E′)
using the energy E′ of the secondary emitted particle. Such a tabular cross section is called a
differential cross section to distinguish it from the cross section σ(E), which considers dependence
on incident energy only. When the energy dependence of the secondary emitted particles is consid-
ered, it is called an energy differential cross section and written as σn,x(E→E′), and when angular
dependence is considered, an angular differential cross section is defined and it is referred to as the
angular differential cross section. In addition, there is a cross section written as σn,x(E→E′, µ)
which takes into account the dependence on both the energy E′ of the secondary particles and
the cosine of the scattering angle µ, and such a cross section is called a double-differential cross
section2.

The cross sections, energies/angular differential cross sections, and double differential cross
sections described above, the average number of neutrons produced per fission ν(E), the fission
spectrum χ(E) and others are collectively called nuclear data.

Since it is impossible to theoretically derive the true value of nuclear data, the most likely value
is estimated from measured data and nuclear model calculations. This process is called nuclear
data evaluation. The measured data used in this nuclear data evaluation is the data for nuclear
data. On the other hand, by using the evaluated nuclear data, it is possible to numerically evaluate
various characteristics of a nuclear reactor. If we can measure the characteristics data of a nuclear
reactor, we can discuss whether the employed nuclear data are good or bad by comparing them with
the results of numerical calculations of reactor characteristics using the nuclear data. In general, it
is customary to refer to the measured data for nuclear data as differential data and the measured
data for reactor characteristics as integral data. Differential data correspond to individual nuclear
data while integral data are determined by multiple nuclear data.

In general, nuclear data will be made available for use as evaluated nuclear data files, and as
indicated above, integral data will be very useful for their verification. The verification of nuclear
data files using integral data is called an integral test of nuclear data, a benchmark test, and so
on.

Here is an example of an integral test of nuclear data files: the ratio of calculated to experimental
values (C/E values) for criticality data of ultra-small fast critical assemblies using four evaluated
nuclear data files (JENDL-3.3, JEFF-3.1, ENDF/B-VII.1, and JENDL-3.2). Figure 1 shows the
ratio of calculated to experimental values (C/E values) for the criticality data of these critical
assemblies. The error bars in this figure indicate the uncertainty of the measured values.

The U.S. Evaluated Nuclear Data File ENDF/B-VII reproduces experimental values within
0.4% for all criticality data, which is the best reproducibility for the criticality data covered here.
On the other hand, the Japanese nuclear data file JENDL-3.3 does not show as good reproducibility
as ENDF/B-VII, since the C/E value varies depending on the criticality data.
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2When neutron traveling directions before and after the reaction are denoted to as Ω⃗ and Ω⃗′, a probability of

neutron traveling direction change from Ω⃗ to Ω⃗′ depends on the angle formed by these two vectors (called as the
scattering angle), and the reaction probability is defined for its cosine.
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Fig. 1: C/E values of criticality data of the ultra-small fast critical assemblies

So, let us consider what information can we take from these results from the standpoint of
improving JENDL-3.3?

The following is a summary of the five criticality data listed here.

� Jezebel: Bare spherical core consisting of 95% Pu-239 and 5% Pu-240

� Jezebel-240: Bare spherical core consisting of 77% Pu-239 and 20% Pu-240

� Flattop-Pu: Bare spherical fuel used in Jezebel surronded by the depleted uranium (DU)
reflector

� Godiva: Bare spherical core consisting mostly of U-235

� Flattop-25: Bare spherical fuel used in Godiva surrounded by the DU reflector

Below are examples of answers to the questions posed above.
First, it may be pointed out that JENDL-3.3 underestimates the reactivity of Jezebel. Since

Jezebel is a system consisting almost exclusively of Pu-239, the nuclear data of Pu-239 in JENDL-
3.3 underestimates the reactivity.

Whereas it is important to discuss the “absolute” C/E values, it should be noted that there
are uncertainties in the measured values. On the other hand, there is a high possibility that there
is a strong relationship (correlation) between the uncertainties of measured values, for example, in
integral data measured with the same facility/material/equipment, as in the case of Jezebel and
Jezebel-240. In such cases, it is effective to focus on the “difference” of C/E values for these two
critical data since the uncertainties of the measured values are expected to appear in the same
direction and to the same extent.

Considering this point, we can first focus on the difference in C/E values between Jezebel
and Jezebel-240. The fact that the C/E value of Jezebel-240, which contains a larger amount
of Pu-240, is larger than that of Jezebel may indicate that the contribution of Pu-240 to the
reactivity is overestimated or that the contribution of Pu-239 to the reactivity is underestimated.
The possibility that the contribution of Pu-240 to reactivity is overestimated or the contribution
of Pu-239 is underestimated can be pointed out.

The difference in C/E values between Jezebel and Flattop-Pu and that between Godiva and
Flattop-25 can also be noted. The C/E value of the core with the DU reflector is smaller than
that of the core without the DU reflector in the JENDL-3.3 result. This indicates that the neutron
reflection effect of U-238 contained in the depleted uranium may be underestimated when JENDL-
3.3 is used.

As described above, the results of the integral test (C/E values) allow us to raise various
possibilities regarding the accuracy of the nuclear data files, and we may ask “Why is the C/E
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value better for ENDF/B-VII? What is the difference between JENDL-3.3 and ENDF/B-VII?”
Sensitivity analysis of nuclear data can provide the answer to such questions.

2 Sensitivity analysis of the effective multiplication factor
to nuclear data

The effective multiplication factor keff is obtained by numerically solving the neutron transport
(diffusion) equation. Since nuclear data such as reaction cross sections between neutrons and
nuclei are used for each term of the neutron transport equation, the effective multiplication factor
obtained will change when the nuclear data change.

Here let us introduce the sensitivity coefficient S as an index to quantify the impact of each
of nuclear data on the calculated neutron multiplication factor. The sensitivity coefficient S is
defined as follows:

S =
∂keff
∂σ

· σ

keff
, (1)

where σ is nuclear data. In this case, S is called the sensitivity coefficient of keff to σ.
In order to consider the physical meaning of the sensitivity coefficient, Eq. (1) is transformed

as follows

S =
∆keff/keff
∆σ/σ

, (2)

where ∆keff is the variation of keff when the nuclear data σ varies by ∆σ. From this, it can be
seen that the sensitivity coefficient S means the ratio of the relative variation of keff to the relative
variation of σ. If the sensitivity coefficient S is 0.5, then a 100% change in σ results in a 50%
change in keff .

Let us assume that there are two nuclear data files, and let us denote them as σA and σB . If the
effective multiplication factor is calculated using each nuclear data file, the resulting kAeff and kBeff
will be obtained. Here, the difference between kA and kB (the subscript eff is omitted hereafter),
∆k, can be calculated from the following equation:

∆k =

(
∆k

∆σ

)
(σA − σB). (3)

The relative variation of k, ∆k/kB , can be written as follows using the sensitivity coefficient defined
in Eq. (1).

∆k

kB
=

kA − kB

kB
=

(
∂kB

∂σB
· σ

B

kB

)
∆σ

σB
= SB · σ

A − σB

σB
(4)

In other words, the relative variation of k can be obtained by the product of the relative variation
of σ and the sensitivity coefficient.

Now, suppose that σB is given and kB is calculated based on it; if the calculation of k takes an
enormous amount of time (say, one month), it would be very tedious to calculate kA corresponding
to a different nuclear data file σA. However, if the sensitivity coefficient S is known in advance,
kA does not need to be calculated directly and can be calculated using the above equation3. The
sensitivity coefficient SB is calculated using the nuclear data file σB . If there is no significant
difference between the nuclear data files σA and σB , we can consider SA ≈ SB .

3Strictly speaking, this calculation is only an approximation. The exact writing of Eq. (3) is

∆k =

(
∂k

∂σ

)
∆σ +

1

2

(
∂2k

∂σ2

)
(∆σ)2 +

1

3!

(
∂3k

∂σ3

)
(∆σ)3 + ... (5)

and it can be seen that Eq. (3) is only a drop of terms above the second order. When ∆σ is small, the effect of
terms above the second order can be considered negligible, but otherwise these terms will also have an effect.
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The nuclear data depends on the nuclide, the type of reaction, and the energy group. If we
write σn,x,g for nuclear data of nuclide n, reaction x, and energy group g, and write Sn,x,g for the
sensitivity to σn,x,g, Eq. (4) can be written as follows:

kA − kB

kB
=

∑
n

∑
x

∑
g

SB
n,x,g

σA
n,x,g − σB

n,x,g

σB
n,x,g

=
∑
n

∑
x

∑
g

(∆k/k)n,x,g (6)

where (∆k/k)n,x,g is the (relative) effect on k of differences in nuclear data for nuclide n, reaction
x, and energy group g.

To know quantitatively how much the difference in nuclear data files σA and σB affects k,
we can obtain kA and kB by neutron transport calculations and take the difference. However,
such an evaluation can only tell us (kA − kB), and it cannot tell us specifically which nuclide,
which reaction, and which energy group have significances on kA − kB . On the other hand, by
obtaining (∆k/k)n,x,g using sensitivity based on Eq. (6), it is possible to quantitatively evaluate
what differences in σn,x,g causes difference between kA and kB .

3 Calculation of sensitivity coefficients

There are several methods for calculating the sensitivity coefficient of the effective multiplication
factor to nuclear data. The simplest method is to slightly vary the nuclear data of interest and
calculate the sensitivity from the corresponding variation in the effective multiplication factor.
This can be expressed in the following equation:

∂k

∂σi
=

∆k

∆σi
=

k′ − k

∆σi
, (7)

where k′ denotes the effective multiplication factor obtained when the variation ∆σi is given for
nuclear data σi. In principle, the sensitivity to any nuclear data can be calculated in this way, but
the nuclear data depend on nuclides, reactions, and energy groups. When the numbers of nuclides,
reactions, and energy groups to be treated are N , X, and G, the number of sensitivity coefficients
to be calculated is (N ×X×G). In order to calculate sensitivity coefficients for all of these nuclear
data, k′ calculations must be performed many times, which requires a large amount of calculation
time.

In contrast to the direct method described above, there is a method to calculate sensitivity
using the solution of the adjoint neutron transport equation. This is referred to as the method
based on the perturbation theory.

In the perturbation theory (first-order perturbation), the reactivity (or change in the multi-
plication factor) due to a perturbation (small variation) of a system can be easily obtained from
the neutron flux of the system before the perturbation and the adjoint neutron flux. k sensitivity
coefficient can be calculated from the variation of k with the variation of cross section as shown
in Eq. (7), so the variation of cross section is regarded as a perturbation and the reactivity due
to the perturbation can be calculated by the perturbation theory-based calculation. Since it is
not necessary to calculate the neutron flux of the system after the change in cross section in the
first-order perturbation theory, the sensitivity of k to arbitrary nuclear data can be obtained by
the perturbation theory-based calculation if the neutron flux of the system before the perturbation
(reference system) and the adjoint neutron flux are calculated beforehand.

Almost all CBZ neutron transport (diffusion) solvers implement methods for solving the adjoint
equations, neutron flux distributions, and methods for calculating sensitivity coefficients using the
adjoint neutron flux distributions.

4 Example of sensitivity analysis

In this section, as an example of the implementation of the sensitivity analysis, we show the
example of the ultra-small fast critical assemblies mentioned at the beginning of this document.
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The difference between the calculated values of JENDL-3.3 and ENDF/B-VII for Jezebel and
Jezebel-240 can be decomposed into the differences for each nuclear data using sensitivity coeffi-
cients as shown in Table 1.

Table 1: Sensitivity analysis results of Jezebel and Jezebel-240 (Nuclear data-wise difference of the
ENDF/B-VII result from the JENDL-3.3 result with the unit of %∆k/kk′)

Nuclide Reaction Jezebel Jezebel-240
Pu-239 (n,f) -0.20 -0.15

(n,γ) +0.18 +0.16
ν +0.29 +0.24
µ̄ -0.18 -0.15

(n,n’) +0.40 +0.35
Pu-240 ν +0.11

µ̄ -0.36
χ -0.15

(n,n) +0.12
(n,n’) -0.16

Total +0.44 +0.11

In Figure. 1, the C/E value of ENDF/B-VII is about 0.3%dk/kk′ larger than that of JENDL-3.3
for Jezebel, which can be considered to contain only Pu-239, mainly because of the difference in the
inelastic scattering cross section of Pu-239 and the difference in the average number of neutrons
produced per fission. In terms of the fission cross section of Pu-239 and the average cosine of the
scattering angle, JENDL-3.3 contributes to a larger evaluation of keff . On the other hand, for
Jezebel-240, which has a smaller Pu-239 content, the effect of the difference in Pu-239 nuclear data
between ENDF/B-VII and JENDL-3.3 is smaller than that of Jezebel. Nevertheless, in Jezebel-
240, the difference in Pu-239 nuclear data contributes to a larger keff evaluation by ENDF/B-VII,
whereas the difference in Pu-240 nuclear data has a compensating effect, resulting in a smaller net
nuclear data difference.

In the sensitivity analysis, the difference between JENDL-3.3 and ENDF/B-VII C/E values
can be further broken down by energy group. Figure. 2 shows the factors that contribute to the
difference between the ENDF/B-VII calculated values and the JENDL-3.3 calculated values for
the keff . data of Jezebel-240, for each reaction and energy group of the nuclear data of Pu-240.
From this figure, it is clear at a glance in which energy region the cross section difference affects
the criticality calculation value.

The difference in the average cosine of the scattering angle µ̄ of U-238 has a large influence on
the difference between JENDL3.3 and ENDF/B-VII keff calculations. The cosines are shown in
Fig. 3, and it can be seen that the evaluated values of JENDL-3.3 are larger in all energy regions.
The large value of the average cosine of the scattering angule means the strong forwardness of
scattering, which promotes the leakage of neutrons from the system, resulting in smaller critical
eigenvalues. Note that this nuclear data has been significantly revised in JENDL-4.0 based on the
results of these integral tests and sensitivity analysis.

5 Conclusion

Integral testing and sensitivity analysis are very important because they are essential to ensure
the performance of the evaluated nuclear data files and to further improve the performance of the
nuclear data files.
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Fig. 2: Sensitivity analysis result of Jezebel-240 (Difference of the ENDF/B-VII result from the
JENDL-3.3 result on the Pu-240 nuclear data)
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Fig. 3: Average cosine of scattering angle of U-238 elastic scattering reaction
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